Selective Laser Melting of Magnesium and Magnesium Alloy Powders: A Review
نویسندگان
چکیده
Magnesium-based materials are used primarily in developing lightweight structures owing to their lower density. Further, being biocompatible they offer potential for use as bioresorbable materials for degradable bone replacement implants. The design and manufacture of complex shaped components made of magnesium with good quality are in high demand in the automotive, aerospace, and biomedical areas. Selective laser melting (SLM) is becoming a powerful additive manufacturing technology, enabling the manufacture of customized, complex metallic designs. This article reviews the recent progress in the SLM of magnesium based materials. Effects of SLM process parameters and powder properties on the processing and densification of the magnesium alloys are discussed in detail. The microstructure and metallurgical defects encountered in the SLM processed parts are described. Applications of SLM for potential biomedical applications in magnesium alloys are also addressed. Finally, the paper summarizes the findings from this review together with some proposed future challenges for advancing the knowledge in the SLM processing of magnesium alloy powders.
منابع مشابه
Comparison of Selective Laser Melted Titanium and Magnesium Implants Coated with PCL
Degradable implant material for bone remodeling that corresponds to the physiological stability of bone has still not been developed. Promising degradable materials with good mechanical properties are magnesium and magnesium alloys. However, excessive gas production due to corrosion can lower the biocompatibility. In the present study we used the polymer coating polycaprolactone (PCL), intended...
متن کاملTHE DEFORMATION BEHAVIOR OF AZ31 MAGNESIUM ALLOY AT ELEVATED TEMPERATURES
AZ31 magnesium alloy is considered as a promising alloy in various applications and industries. Furthermore, to design a proper hot working process (rolling, forging and extrusion), the assessment of hot working behaviour of the alloy is necessary. Accordingly, the hot deformation behaviour of AZ31 alloy was studied through hot compression testing method This was carried out in a wide range of ...
متن کاملOn the Selective Laser Melting (SLM) of the AlSi10Mg Alloy: Process, Microstructure, and Mechanical Properties
The aim of this review is to analyze and to summarize the state of the art of the processing of aluminum alloys, and in particular of the AlSi10Mg alloy, obtained by means of the Additive Manufacturing (AM) technique known as Selective Laser Melting (SLM). This process is gaining interest worldwide, thanks to the possibility of obtaining a freeform fabrication coupled with high mechanical prope...
متن کاملReview on ultrafined/nanostructured magnesium alloys produced through severe plastic deformation: microstructures
A review on the microstructural evolution in magnesium alloys during severe plastic deformation waspresented. The challenges deserved to achieve ultrafine/ nanostructured magnesium were discussed.The characteristics of the processed materials are influenced by three main factors, including i)difficult processing at low temperatures, ii) high temperature processing and the occurrence ofdynamic r...
متن کاملRare Earth Element Yttrium Modified Mg-Al-Zn Alloy: Microstructure, Degradation Properties and Hardness
The overly-fast degradation rates of magnesium-based alloys in the biological environment have limited their applications as biodegradable bone implants. In this study, rare earth element yttrium (Y) was introduced into AZ61 magnesium alloy (Mg-6Al-1Zn wt %) to control the degradation rate by laser rapid melting. The results showed that the degradation rate of AZ61 magnesium alloy was slowed do...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016